Uniform rectifiability implies Varopoulos extensions
نویسندگان
چکیده
We construct extensions of Varopolous type for functions f ∈ BMO ( E ) , any uniformly rectifiable set codimension one. More precisely, let Ω ⊂ R n + 1 be an open satisfying the corkscrew condition, with -dimensional boundary ∂Ω, and σ ≔ H ⌊ ∂ denote surface measure on ∂Ω. show that if d compact support then there exists a smooth function V in such | ∇ Y is Carleson norm controlled by converges some non-tangential sense to almost everywhere respect . Our results should compared recent geometric characterizations L p -solvability BMO-solvability Dirichlet problem, Azzam, first author, Martell, Mourgoglou Tolsa author Le, respectively. In combination, this latter pair shows one can construct, all C c harmonic extension u 2 dist only presence appropriate quantitative connectivity condition.
منابع مشابه
Uniform measures and uniform rectifiability
In this paper it is shown that if μ is an n-dimensional Ahlfors-David regular measure in R which satisfies the so-called weak constant density condition, then μ is uniformly rectifiable. This had already been proved by David and Semmes in the cases n = 1, 2 and d − 1, and it was an open problem for other values of n. The proof of this result relies on the study of the n-uniform measures in R. I...
متن کاملTHE WEAK-A∞ PROPERTY OF HARMONIC AND p-HARMONIC MEASURES IMPLIES UNIFORM RECTIFIABILITY
Let E ⊂ Rn+1, n ≥ 2, be an Ahlfors-David regular set of dimension n. We show that the weak-A∞ property of harmonic measure, for the open set Ω := Rn+1 \ E, implies uniform rectifiability of E. More generally, we establish a similar result for the Riesz measure, p-harmonic measure, associated to the p-Laplace operator, 1 < p < ∞.
متن کاملResearch Article Symmetry Theorems and Uniform Rectifiability
Denote points in Euclidean n-space, Rn, by x = (x1, . . . ,xn) and let E and ∂E denote the closure and boundary of E ⊆Rn, respectively. Let 〈x, y〉 denote the standard inner product in Rn, |x| = 〈x,x〉1/2, and set B(x,r)= {y ∈Rn : |y− x| < r} whenever x ∈Rn, r > 0. Define k-dimensional Hausdorffmeasure, 1≤ k ≤ n, in Rn as follows: for fixed δ > 0 and E ⊆Rn, let L(δ)= {B(xi,ri)} be such that E ⊆ ⋃...
متن کاملLocal uniform rectifiability of uniformly distributed measures
The study of uniformly distributed measures was crucial in Preiss’ proof of his theorem on rectifiability of measures with positive density. It is known that the support of a uniformly distributed measure is an analytic variety. In this paper, we provide quantitative information on the rectifiability of this variety. Tolsa had already shown that n-uniform measures are uniformly rectifiable. Her...
متن کاملPointwise Hyperbolicity Implies Uniform Hyperbolicity
We provide a general mechanism for obtaining uniform information from pointwise data. A sample result is that if a diffeomorphism of a compact Riemannian manifold has pointwise expanding and contracting continuous invariant cone families, then the diffeomorphism is an Anosov diffeomorphism, i.e., the entire manifold is uniformly hyperbolic.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2021
ISSN: ['1857-8365', '1857-8438']
DOI: https://doi.org/10.1016/j.aim.2021.107961